Families of polynomials of every degree with no rational preperiodic points

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preperiodic points for families of rational maps

Let X be a smooth curve defined over Q̄, let a, b ∈ P(Q̄) and let fλ(x) ∈ Q̄(x) be an algebraic family of rational maps indexed by all λ ∈ X(C). We study whether there exist infinitely many λ ∈ X(C) such that both a and b are preperiodic for fλ. In particular, we show that if P,Q ∈ Q̄[x] such that deg(P ) 2 + deg(Q), and if a, b ∈ Q̄ such that a is periodic for P (x)/Q(x), but b is not preperiodic f...

متن کامل

Simultaneously Preperiodic Points for Families of Polynomials in Normal Form

Let d > m > 1 be integers, let c1, . . . , cm+1 be distinct complex numbers, and let f(z) := zd + t1zm−1 + t2zm−2 + · · ·+ tm−1z + tm be an mparameter family of polynomials. We prove that the set of m-tuples of parameters (t1, . . . , tm) ∈ Cm with the property that each ci (for i = 1, . . . ,m+ 1) is preperiodic under the action of the corresponding polynomial f(z) is contained in finitely man...

متن کامل

Preperiodic Points of Polynomials over Global Fields

Given a global field K and a polynomial φ defined over K of degree at least two, Morton and Silverman conjectured in 1994 that the number of K-rational preperiodic points of φ is bounded in terms of only the degree of K and the degree of φ. In 1997, for quadratic polynomials over K = Q, Call and Goldstine proved a bound which was exponential in s, the number of primes of bad reduction of φ. By ...

متن کامل

Portraits of Preperiodic Points for Rational Maps

Let K be a function field over an algebraically closed field k of characteristic 0, let φ ∈ K(z) be a rational function of degree at least equal to 2 for which there is no point at which φ is totally ramified, and let α ∈ K. We show that for all but finitely many pairs (m,n) ∈ Z≥0×N there exists a place p of K such that the point α has preperiod m and minimum period n under the action of φ. Thi...

متن کامل

Uniform Boundedness of Rational Points and Preperiodic Points

We ask questions generalizing uniform versions of conjectures of Mordell and Lang and combining them with the Morton–Silverman conjecture on preperiodic points. We prove a few results relating different versions of such questions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus. Mathématique

سال: 2021

ISSN: 1778-3569

DOI: 10.5802/crmath.173